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Torsional oscillations of a non-Newtonian fluid 
with a free surface 

By T. W. SECOMBT A N D  S. ROSENBLAT 
Department of Mathematics, University of Melbourne, Parkville, Victoria 3052 

(Received 10 November 1978 and in revised form 19 February 1979) 

A study is made of the flow and the shape of the free surface of a non-Newtonian fluid 
contained in a flat-bottomed cylindrical vessel performing torsional oscillations of 
small amplitude. For the case where the fluid depth is small compared with the vessel 
radius, the solution is shown to have a simple radial dependenceexcept in a boundary- 
layer region near the side wall. It is shown that under certain circumstances the mean 
steady second-order components of both free surface curvature and radial-axial flow 
may be in the reverse direction to those for a Newtonian fluid. It is found that flow 
reversal may occur at  any frequency of oscillation, but that surface curvature reversal 
cannot occur at low frequencies. 

1. Introduction 
Suppose that a flat-bottomed cylindrical vessel, partially filled with non-Newtonian 

fluid, is made to perform torsional oscillations about its axis, which is vertical. In this 
paper we examine the nature of the flow induced in the fluid by the motion of the 
container; in particular we compute the resulting deformation of the free surface. 

A related problem, the calculation of the flow field between two infinite parallel 
planes, one of which is performing torsional oscillations, was studied by Rosenblat 
(1978). In  that paper it was shown that, under certain circumstances, the direction of 
the mean second-order flow was opposite to that which would occur in a Newtonian 
fluid. We find a similar effect in the present configuration. In addition to this flow 
reversal we show that the fluid in the centre of the container may rise, instead of falling 
as it does in the Newtonian case. The rise of the fluid is a kind of Weissenberg effect, 
brought about by the action of normal stresses, except that the rise does not occur 
adjacent to a rotating rod. 

We shall follow Rosenblat’s treatment in several respects, and use the same con- 
stitutive equations. Modifications are needed, however, to take into account the free 
surface and the finite vessel radius. To make the problem more tractable we neglect 
surface tension and assume that the radius of the vessel is substantially greater than 
the fluid depth. This assumption leads to a two-parameter problem. One parameter 
represents the (small) amplitude of the torsional oscillations, while the second para- 
meter is the ratio of depth to radius. Given that the latter is small we find that the 
flow in the vessel is described by a similarity solution except in an annular region near 
the side wall; the width of this region is of the order of the depth of the fluid. 
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We calculate in detail the mean (steady) second-order flow in the central, core 
region. We show that under a certain set of conditions the direction of this flow is 
opposite to that in a Newtonian fluid, and that under a diflerent set of conditions the 
free surface may rise at the centre instead of falling. Although both effects are due to 
the nonlinearity of the fluid, they appear at different levels of nonlinearity. We 
indicate the required conditions by evaluating asymptotic solutions for low and high 
frequencies, and by some numerical computations. 

2. Formulation 
The constitutive equations which we shall use were originally given by Coleman & 

No11 (1961) and were derived in the form we require by Joseph (1976). They describe 
a general simple fluid undergoing (not necessarily steady) motions of small amplitude. 
We let E > 0 be the parameter which measures the smallness of these motions, 
uniformly in space and time; the question of how small E should be is postponed until 
later. 

It is known (cf. Rosenblat 1978) that the stress tensor in the case of small E can be 
written as 

(2.1) 

where (2.2) 

and 

s = E S ~ + E ~ S ~ + O ( ~ ~ )  

Here we have expanded the velocity field in the form 

and we have defined 
= Eul + € 2 ~ ~  + 0 ( € 3 ) ,  

A,(s) = Vu,(t-8) + [Vui(t-s)]T, i = I, 2 

and El($) = -1; Ul(t - 8’) ds’. (2.6) 

All quantities are also dependent on a spatial variable x; [(s) and y(sl, s2) are material 
functions, with y(sl, s2) symmetric in its arguments. 

We shall construct the solution as a power series in E up to second order, which, it 
turns out, is the lowest order at  which the free surface is perturbed from its rest state. 
We assume that the motion is axisymmetric and use cylindrical polar co-ordinates 
( r ,  0 , ~ ) .  The base of the vessel is located in the plane z = 0, and we assume the vessel 
to be a circular cylinder with side wall at r = a. The velocity field is then 

where P, 6, k are unit vectors in the co-ordinate directions. The free surface is given by 
z = h(r, t )  for 0 6 r < a. The equations of motion are, in standard notation, 

u(r, e, z, t )  = u(r ,  z ,  t )  i? + v(r, z ,  t )  8 + w(r,  z, t )  2, (2.7) 

p ( g + u . v u )  = -V@+V.S 

where @ = p+pgz; 
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the continuity equation is v .u  = 0. (2.10) 

At the free surface we require a kinematic condition and conditions on the normal 
and tangential stress components. The former is easily shown to be 

(2.11) 

while the stress conditions in the absence of surface tension are (cf. Joseph & Beavers 

ah 1976) 

ar 
(2.12) p,-@+Ss,,--fJs,,+pgh = 0 

on z = h(r, t )  for the normal stress, and 

ah 
ar 

s,,+ (Szz--Srr)-  = 0 (2.13) 

on z = h(r, t )  for the tangential stress components. In  (2.12) p a  is the atmospheric 
pressure. 

We assume that the vessel is rotating with an angular velocity given by 

ew cos wt = EW Re eiwt. (2.14) 

(According to this definition the amplitude of the oscillation is e radians.) It follows 

u = cwrReeiwt6 when x = 0, 0 6 r < a, (2.15) that 

and u = ewu Re eiWt6 when r = a, 0 < x < h(a, t ) ,  (2.16) 

are the boundary conditions a t  the bottom and the side of the vessel respectively. 
Finally we require a condition that the amount of fluid in the container is conserved: 

j: h(r, t ) .  2nr dr = ra2d, (2.17) 

where d is a given constant. 

for the quantities S(r ,  x ,  t ;  e), u(r, z ,  t ;  c ) ,  @(r,  z ,  t ;  e )  and h(r, t ;  e) in the forms 
In accordance with our proposed perturbation scheme we shall look for solutions 

u = EU, + e2u2 + O ( E ~ ) ,  S = e S ,  + EZS, + O(e3) ,  
@ = @, + E @ ~  + EW, + O ( E ~ ) ,  h = h, + eh, + e2h, + 0(e3). (2.18) 

At order zero there is no motion and in the absence of surface tension the surface is 

h, = d, @, =pa+&; (2.19) 

the first and second-order corrections to this equilibrium state are calculated in the 
next two sections. 

flat. We take the solution to be 

3. First-order solution 
Consideration of the effect of reversing the sign of e shows that u, w and h will be 

even functions of E ,  while v will be an odd function of E .  We expect therefore that the 
first-order solution will take the form 

up, 2, t )  = vl(r, z , t )  6, = 0, h, = 0. (3.1) 

(3.2) 

The boundary conditions (2.15) and (2.16) suggest the structure 

vl(r, z, t )  = Re (V(r ,  z )  eiut). 
26 FLM 93 
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Then using (2.2) we find that 

T. W.  Xecomb and S. RosenbEat 

v .  s, = lom C(s) V2U,(t - s) as,  

and so (2.8) gives at first order in E 

(3.3) 

(3.4) 

J o  

We transform (3.4) into dimensionless form by putting V = rwU, r = r'a, z = z'd; 

where the primes have been omitted, and where we have defined 

h = d/a,  R = (iopd2/p)a.  (3.7) 

The solution of (3.6) must satisfy the boundary conditions (2.11)-(2.13) and (2.15)- 
(2.17) to the appropriate order in E .  The conditions (2.1 1)-(2.13) should be applied on 
the unknown free surface, but they can be applied on the plane z = 1 by using Taylor's 
theorem and the perturbation scheme (2.18). Since h, = 0 we see that (2.1 1) and (2.17) 
are satisfied identically, and since u1 = w1 = 0 the remaining conditions can easily be 
shown to reduce to 

a U / a z = o  on z = l ,  O < r <  I ,  (3.8) 

U = l  on z = O ,  0 6 r < l ,  (3.9) 

and U = l  on r = l ,  O < z < l .  (3.10) 

For sufficiently small h equation (3.6) has the form of a singular perturbation 
problem which can be solved by the method of matched asymptotic expansions. We 
anticipate a boundary layer near the side wall r = 1 and an outer region away from 
the wall. The governing equation in the outer region is obtained by setting h = 0 in 

a2u/az2 = Q ~ U ,  (3.11) (3.6): 

and the solution of this is required to satisfy the conditions (3.8) and (3.9). We obtain 

cash R( 1 - Z) u = UO(Z) = 
coshR ' 

(3.12) 

To determine the solution near the wall we introduce the boundary-layer co-ordinate 

[ = ( l - r ) / h  

and set u(r, z )  = uo(z)  + ui(E,z)* 

We find that to a first approximation 

with boundary conditions 

(3.13) 

(3.14) 

(3.15) 

(3.16) 
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together with the requirement that Ui(& z )  -+ 0 as t-+ 00. We obtain the solution 

(3.17) 

where (3.18) 

Equation (3.14) now gives the composite flow solution for the first-order field. Away 
from the side wall, however, a good approximation is given by (3.12)) which corres- 
ponds to a similarity solution with velocity proportional to radius. 

4. Second-order steady flow 
The nonlinear self-interaction of the first-order flow generates a second-order 

motion. It is clear from the structure of the problem that this second-order flow field 
will comprise a steady component and a second harmonic component. Hence we can 
write (in dimensional variables) 

uB(r, z, t )  = uio)(v, z )  +Re [e2iwtuA2)(r, z ) ] ,  (4.1) 

and similarly for 0 2 ( r ,  z, t ) ,  S J r ,  z, t )  and h2(r, t ) .  We shall confine our attention hence- 
forth to the steady component of the flow, the ‘steady streaming’, and omit all con- 
siderations of the second harmonic. 

We note first of all that the steady component of the second-order stress tensor S2, 
given by equation (2.3), can be written in the form 

J O  

where Z(0) is the steady part of the second and third terms in (2.3). Thus Z(0) represents 
the forcing due to the self-interaction of the first-order flow. From (2.5) we have that 

Ai0)(s) = Vdjo’(t - S )  + [Vui0’(t - s ) ] ~  

Po v2up - V O p  = p[ul. VU,](O) - v . Z(0)) 

(4.3) 

and it follows that the equations of motion for the steady second-order flow can be 
written as 

(4.4) 

where (4.5) 

The equations (4.4) and the continuity equation have to be solved subject to the 
appropriate boundary conditions. 

Our procedure will be as follows. We shall solve the problem in the central (outer) 
region without imposing the side-wall boundary conditions, and then we shall con- 
sider what adjustments need to be made to the solution by way of a boundary-layer 
correction. To this end we seek a solution of the form 

UQ’ = u, + ui, Op’ = $o + $,, hi0’ = h, + hi, (4.6) 

where the quantities ui, $i, hi tend to zero exponentially outside the boundary layer. 
26-n 
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We need first of all to calculate the right-hand side of (4.4) in the outer region. From 
(3.1), (3.2) and (3.12) we have that, in dimensional variables, 

cash !2( 1 - z/d) eiWt 8 1 u, w Re [roV,(z) eiWt] 8 = Re rw [ coshQ (4.7) 

in the outer region. Hence it is easy to show that 

[ul . VU,]~~) = - +rw2V, go F, (4.8) 

where the overbar denotes complex conjugate. Next we have from (2.5) and (2.6) that 

[Al(s)], = rw . Re [eidt-s) U;] (62 + 26) 

&(s)], = r . Re [eiwt( 1 - e-ios) iU,] 8. and 

From these we obtain 

[(cl. V) Al + A,. Vcl + VET. Al]ho) = - r2w sin ws U:, a:, 22 

[A,(sl) . Al(s2)]bo) = +r2wz cos w(sl - s2) UL gh(22 + 88). and 

Combining these expressions we now obtain 

Z$O)(r, z )  = r2w2Ub O,,& 22 + +p2(22 + @)I, 

and 

We assume now that the flow in the central region has the structure 

uo(r, z )  = uo(r, z )  P + wo(r, z )  2; 

substituting this into equations (4.41, and using (4.8) and (4.13), we obtain 

Po [- 
These have to be solved in conjunction with the continuity equation 

au, u, aw, -+-+- = 0. 
ar r az 

(4.9) 

(4.10) 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

(4.15) 

(4.16) 

(4.17) 

(4.18) 

(4.19) 

A first approximation to the radial-axial flow field in the central region can be 
found in the similarity form 

u(r ,  z )  = rw2$'(z), w(r,  2) = - 2w2$(2), 

#(r,  2 )  = pw2[q(z) + r27(z)] .  (4.20) 

These satisfy the continuity equation identically, while (4.17) and (4.18) reduce to 

(4.21) 

(4.22) 

P 7 ( 4  = Pk+ (Pl++P2) u:,a:, 
and Po Sl." = 2Pk - ipu, Do + (2P, + W 2 )  u:, o:,, 
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where k is a constant, together with a differential equation for a@), namely 

pa’ +2p0?y = 0. (4.23) 

We consider next the boundary conditions for the system (4.21)-(4.23). At the base 

$ = O ,  $ ‘ = O  on x = O .  (4.24) 

The tangential stress conditions at  the free surface reduce to wo = 8uo/az = 0, which 
become 

$ = O ,  ? y = O  on z = d .  (4.25) 

The normal stress conditions can be shown to reduce to 

of the cylinder we must have that uo = wo = 0, which become 

- p o 2 [ a ( d ) + r 2 7 ( d ) ] - 4 p O W 2 ~ ’ ( d ) + p g h o  = 0. (4.26) 

The side-wall conditions do not apply to the outer solution. We postpone until later 
consideration of the volume-conservation condition (2.17). 

We first solve equation (4.22), using the boundary conditions (4.24) and (4.25) to 
determine the solution and the constant k. We set 

(4.27) 

Then with the aid of (3.12) we can write equation (4.22) as 

Integrating and using theboundary conditions we find that 

(4.29) (1 - M )  coshp -p-3 sinhp] - (1 + M )  [q-2 COB q - q-3 sin q] k =  
+(coshp + cos q)  

and 
(i-M)p-2[coshp-coshp(l -7)]- (1 + M ) q - 2 [ ~ ~ ~ ~ - ~ ~ ~ ~ ( 1 - - ) ]  

2(coshp + cos q )  $,, = k(v2 - 271) + 
(4.30) 

Equation (4.26) can obviously be written in the form 

(4.31) 

andfrom(4.21) weseethatT(1) = l.Hence(4.31)gives 

ho(r) = (w2 /s )  [ ~ ( l )  + (4c0/pd) $,,(I) + kr21) (4.32) 

where the remaining constant a( 1) has to be determined from the volume-conservation 
condition (2.17). 

Before proceeding we consider the influence of the flow in the boundary layer. We 
see from (4.4) that the components ui, q5i of the velocity and pressure fields are driven 
by the self-interactions of those components of the first-order field which vanish 
outside the boundary layer. In  other words, they satisfy a reduced version of (4.4)) 
namely 

Po v2u, - vq5i = [p&. VU,)“- v . Z(O’],, (4.33) 
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and the continuity equation. The velocity ui is required to vanish at the base of the 
cylinder and at the side wall. The stress conditions at  the free surface become equations 
relating ui, and the height h, to known quantities which vanish outside the boundary 
layer. Finally, ui, and hi are required to tend to zero exponentially outside the 
boundary layer. 

Although the details are tedious and complicated, and will be omitted, it is con- 
ceptually fairly easy to see that the boundary-value problem just described does have 
a solution of the desired character. In  particular we can show that 

h$O)(r) = h,(r) +hi@), (4.34) 

where h,(r) is given by (4.32) and where h,(r) is significant only in the side-wall boundary 
layer. 

We return to the volume-conservation condition (2.17). For the mean second-order 
flow this condition is 

/;rh$O)(r)dr = rh,(r)dr+O(h) = 0, La (4.36) 

where the term O(h) comes from the integration of rhi(r),  which is an exponentially 
decreasing function of (u - r ) /d .  Hence, applying (4.35) to the solution (4.32), we 
obtain to a first approximation the value of a( l), namely 

a(1) + (4p0/& $?(I) = - $&a2. (4.36) 

Hence we deduce the expression 

(4.37) 

for the free surface height in the central region. 
It is interesting to observe that, to this order of approximation, the free surface has 

the shape of a parabola (as it does in the case of rigid body rotation about a vertical 
axis). However, the parabola may be concave upward or downward, depending on 
the sign of the constant k .  We shall discuss this question in detail in the next section. 

The validity of our approximation scheme depends on the smallness of the para- 
meter E. Two separate factors contribute to an estimation of how small E must be. 
First, the expansion (2.1) imposes a bound on the rate of strain, and some straight- 
forward calculations lead to the estimate 

E ~ Q  tanh Ql a/d < 1. (4.38) 

This condition validates the linearization of the equations of motion implicit in our 
procedure. Secondly, and independently, there is the assumption that the free surface 
boundary conditions could be imposed at  the undisturbed position z = d .  From (4.37) 
we see that this can be justified provided 

e2w2a21kl/gd < 1. (4.39) 

The estimates (4.38) and (4.39) taken together show that the admissible size of 6 
decreases as the frequency w increases. 

Finally we remark that equations (4.29) and (4.37) suggest a possible method for 
' free surface viscometry ' (cf. Joseph & Beavers, 1976). The only second-order material 
parameter involved in (4.29) is (4,8,+ 3,8,), and the dependence is linear. Therefore if 
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p is known for a fluid at  a particular frequency, a measurement of the steady com- 
ponent of the free surface curvature for oscillations at  a known small amplitude will 
at once enable (4/3, + 3P.J to be evaluated. 

5. Radial-axial flow and surface curvature 
In this section we determine the direction of the steady streaming flow and the 

sign of the surface curvature. We are particularly interested in comparing non- 
Newtonian behaviour with Newtonian behaviour, and consequently we begin by 
describing the latter. 

The direction of flow and the free surface curvature can be inferred from the results 
of the preceding section by taking ,u = p0 and setting M = 0. Then we find that 

P = Q = (2(jJPd2/P,)+ 
and (4.29) becomes 

p(coshp - cosp) - (sinhp - sinp) 
4 3  k =  
xp (coshp + C O S ~ )  

It is easily verified that k > 0 for all p ,  that is, for all values of the frequency. Hence 
we conclude that the free surface in a Newtonian fluid is always concave upward, 
which is the anticipated result. From (5.2) we can show that k + $  as p+O and 
k N 3/(4p2) asp  +coo. In  view of (4.37) and (5.1) this means that 

(5.3) 
w2 

h,(r) z as (r2 - ka2) as ( j ~ +  0 

and 3Po (jJ h,(r) N -((r2-&a2) as w+m. 
8 P d 2  

(5.4) 

(The latter result, of course, can only be interpreted in a limited sense because of the 
restrictions (4.38) and (4.39).) 

Next, if we define a dimensionless radial velocity component by 

we see that in the Newtonian case (4.30) becomes 

Straightforward analysis of (5.6) shows that YP, > 0 for 7 near zero and 'Y, < 0 for 
7 near 1. This means that there is radial outflow of the steady streaming near the base 
of the cylinder and radial inflow near the free surface. Moreover, it can easily be 
shown that 'Y, changes sign only once in the interval 0 < 7 < 1. The position of the 
point where the change of sign occurs depends on p and moves towards the base as p 
increases. The variation of YP, with 7 for various values of p has been computed, and 
some typical results are shown in figure 1. 

We consider next the behaviour of a non-Newtonian fluid in the case of low- 
frequency oscillations. We define 

a1 = -joms6(s) ds; (5.7) 
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0.4 

0.4 

FIGURE 1 .  The radial component of the steady streaming flow for a 
Newtonian fluid a t  several values of frequency. 

this material parameter is known to be negative (a, < 0 )  in normal circumstances. 
Next we define the dimensionless parameters 

8 is the Deborah number relative to  the time-scale of the oscillations, and c28 is a 
Reynolds number. I n  the present context low frequency oscillations are defined by the 
inequalities 

(5.9) 8 < 1, c2 = O(1). 

Expanding in powers of 0 we obtain 

= po[i - ie + o(ez)l, = (c2e/2): [i + &ie+ o(e2)l. (5.10) 

from which we deduce that 

p = (ic,2ee)4 [I - i e  + o(e2)1, = (ic2e)i [ I  + ie+ o(e2)I. (5.11) 

Also, we can show that 
PI = 4 1  + 0(O2)1, pz = %[l+ 0(O2)1 ,  (5.12) 

where 

From (5.12) i t  follows that 
41 = - 4e( 1 - $A) [l + O(Oz)],  

where A - CLJCX,. 

(5.13) 

(5.14) 

(5.15) 

Substituting these approximations into (4.29) we obtain 

k = +[I + 0(02)]. (5.16) 

Hence k is positive for oscillations of sufficient.ly low frequency, and thi3 means that the 
parabola is concave upwards, as in the Newtonian case. 
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Next, we find that (4.30) becomes to leading order 

where 

c402 
‘YV = (1  - T j 2 )  [7r4+ 7?j2 - 2 + A(5?j2 - l)], 

- 252( 1 - A) 
c2 - q = l - q ,  A =  

(5.17) 

(5.18) 

The Newtonian case corresponds to a1 = a2 = 0, and hence to A = 0. For convenience 
we define: Newtonian behaviour, for which the flow is outwards near the bottom of 
the vessel and inwards a t  the free surface; anti-Newtonian behaviour, for which these 
directions are reversed; and intermediate behaviour, for which the flow has the same 
direction near both boundaries. These three categories are not sufficient to char- 
acterize the flow since, as we shall see below, there remains the question of the behaviour 
in the interior. However, they are convenient categories for the present. 

We find from (5.17) that  the flow is determined by the value of A ,  and an easy 
calculation gives the following results: 

A 3 - 2: 
A < - 3: 

- 3 < A < - 2 :  

the behaviour is Newtonian; 
the behaviour is anti-Newtonian; 
the flow has intermediate behaviour, being directed outwards 

near both boundaries, and balanced by a central inflow. 

The quantity A is the ratio of two of the well-known Rivlin-Ericksen material 
constants, and in practice A > 1 for some real materials. Hence anti-Newtonian 
behaviour can occur (for suitable values of c) in the low frequency limit. This effect 
is due to the presence of the free surface; in the configuration studied by Rosenblat 
(1978) the steady streaming was shown to have Newtonian behaviour at low 
frequencies. 

To exhibit the behaviour at high frequencies (w + GO) we require certain asymptotic 
forms. Integrating (3 .5)  by parts we find 

lu = - iw-lt;(o) - w-yyo) + 0 ( ~ - 3 ) .  (5.19) 

Then (3.7) and (4.27) give 

p = -ptdC-#(o) t;’(O) + O(w-2), q = Z w p + d p ( O )  + O(w-1). (6.20) 

Similarly we obtain 

p1 = - w - q o )  + o(w-4), p2 = w-2y(o, 0) + o(w-z), (5.21) 

A simple application of these asymptotic forms to (4.39) and (4.30) gives 

and 

3( 1 - M )  [P-~ coshp -p-3 sinhp] 
4(coshp+ cosq) k =  + O(w-2) 

Yl, = ( w y )  [ - M ) f  (7) + 0 ( w - 2 ) ] ,  
coshp + cos q 

(5.22) 

(5.23) 

(5.24) 

where 
f(7) t $(p-2coshp-p-3sinhp) ( y 2 - 2 q )  ++p-2[coshp-coshp(l-q)]. (5.25) 
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The quantity p-2 coshp -p-3 sinhp is positive for all p ;  hence the curvature 
coefficient k is positive if M < 1 and negative if M > 1. The function f (7) can be shown 
by elementary methods to have the form of a Newtonian-type profile for all values 
of p .  Thus the behaviour is Newtonian or anti-Newtonian according as M < 1 or 
M > 1 respectively. From (5.22) we deduce that, in the high frequency limit, the flow 
will be anti-Newtonian and the free surface curvature negative if and only if 

(5.26) 

This criterion for anti-Newtonian behaviour was also obtained in Rosenblat's (1978) 
problem. 

To examine the behaviour of the flow profile Y and the coefficient k over the whole 
range of frequencies it is necessary to propose explicit forms for the material functions 
6(s) and y(sl, sz).  So as to gain some insight into this behaviour, we choose the simplest 
Maxwell-type approximations, namely 

a s )  = - (&/%) exp ( lLosla1)  (a1 < 0) (5.27) 

and Y ( % 4  = a,gzexp [ - 6(8, + s2)l (8 > 0). (5.28) 

These are consistent with (44, (5.7) and (5.13). 
We find now that 

p = C ~ + ( I + ~ ~ ) ~ C O S X ,  p = c8+(1+82)asinX (5.29) 

where x = 8 arctan 8 + &r; (5.30) 

moreover, (5.31) 

where K = - a, 6/,u,. (5.32) 

With the aid of these relations we can calculate the quantities k and'Y, in terms of the 
four parameters 8, c, ~2 and A. Of these parameters, only 8 involves the frequency: 
it is the ratio of the elastic relaxation time of the material to the period of forced 
oscillations (the Deborah number). The parameters A and K~ involve only ratios of 
material quantities; both of these can be regarded as ratios of characteristic times. 
The parameter c generally occurs in the combination c28 which, as noted earlier, has 
the form of a Reynolds number. 

We consider first the conditions under which the free surface curvature coefficient 
k changes sign. For fixed values of A and c, setting k = 0 divides the ~ ~ - 8  plane 
into regions k > 0 and k < 0. Figure 2 depicts the situation as computed numerically 
for A = 1.5 (a physically realistic value for certain materials) and for the values 
c = 1,  2 and 10. We see that k > 0 whenever 8 is small, which agrees with our small 
frequency approximation. Also, k < 0 for large 8 and large K~ is small. The computa- 
tions show that the transition value of ~2 at which k changes sign for large 8 is approxi- 
mately K~ = 1.1, independent of c. Now from (5.27) and (5.28) we have that 

(5.33) 

and when A = 1.5 the condition (5.26) is equivalent to K~ > I$. Hence there is excellent 
agreement between the numerical and the asymptotic results. 
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FIGURE 2. Points of reversal of the free-surface curvature in a non-Newtonian fluid for A = 1.5 
and several values of c. k > 0: surface is concave upwards; k < 0: surface is concave downwards. 

The dependence of the velocity profile Y,, on the parameters 8, c,  K~ and A is much 
more complicated. Generally speaking, for fixed values of c and A there is a single 
curve in the K~ - 8 plane which separates a regime where the flow near the free surface 
is out'ward from a regime where this flow is inwards. This curve is close to, but does 
not coincide with, the curve separating regions of positive and negative free surface 
curvature in the K~ - 8 plane for the same values of c and A. 

The behaviour near the lower boundary is very complex. Instead of just one 
separatrix there are many curves dividing the plane into regions of positive and 
negative outflow. Thus, as 0 varies with ~2 fixed, the direction of the radial flow at the 
lower boundary can switch back and forth several times; the condition (5.26) is clearly 
only a high frequency result. A typical situation is shown in figure 3, which corres- 
ponds to the case A = 1.5 and c = 1.  There are regions of Newtonian, anti-Newtonian 
and intermediate flow, in the sense defined above. There, are, moreover, two types of 
intermediate flow: one in which the motion is radially outwards near both boundaries, 
and one in which it is radially inwards. Even this, however, does not tell the whole 
story, since there can be several changes of direction of the flow in the interior for each 
fixed set of parameter values. The profiles can be computed quite easily, but we have 
not thought it worthwhile to do so here. 

To summarize, we find that reversal of the steady flow is possible at  any frequency, 
but that reversal of the free surface curvature cannot occur a t  low frequencies. Under 
certain conditions the free surface curvature, the flow a t  the free surface and, most 
strikingly, the flow at the lower boundary may undergo several reversals as the 
frequency is increased. 
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FIQURE 3. Regions of Newtonian, anti-Newtonian and intermediate behaviour of the  steady 
streaming for A = 1.5 and c = 1.  E , Outward radial flow near the free surface. p, Inward radial 
flow near the free surface. B, Outward radial flow near the bme. m] , Inward radial flow near 
the base. 
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